Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

M Mahendra, ${ }^{\text {a }}$ V. Gayathri, ${ }^{\text {b }}$ K. Jayalakshmi, ${ }^{\text {c }}$ K. S. Rangappa, ${ }^{\text {c }}$ M. A. Sridhar ${ }^{\text {a }}$ and J. Shashidhara Prasad ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Studies in Physics, Mansagangotri, University of Mysore, Mysore 570 006, India, ${ }^{\mathbf{b}}$ Department of Studies in Chemistry, Central College, Bangalore University, Bangalore 560 001, India, and ${ }^{\text {c }}$ Department of Studies in Chemistry, Mansagangotri, University of Mysore, Mysore 570 006, India

Correspondence e-mail:
mas@physics.uni-mysore.ac.in

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.144$
Data-to-parameter ratio $=11.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

6-Phenyl-5,6-dihydrobenzoimidazo[1,2-c]quinazoline

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3}$, the molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

Comment

The quinazoline ring is widely found in alkaloids and many biologically active compounds. Substituted quinazolines have fungicidal, antimicrobial, anti-inflammatory, anticancer, antihypertensive and anti-HIV activities (Alexandre et al., 2003; De Clercq, 2001). A few X-ray crystal structure reports for benzimidazoquinazolines have been published (Elgemeie, et al., 1998; Low et al., 2003; Jayalakshmi, et al., 2004). In view of the above observations, the title compound, (I), was synthesized and its crystal structure is reported here (Fig. 1).

(I)

Most of the bond lengths and angles have normal values and are comparable to those reported in similar structures (Elgemeie et al., 1998; Low et al., 2002, 2003; Jayalakshmi et al., 2004). The benzene and imidazole rings are planar, but the quinazoline ring system deviates from planarity, with atom C10 lying 0.4707 (16) \AA from the N7/C8/C13/C12/N11 leastsquares plane. The crystal packing is stabilized by an intermolecular $\mathrm{N} 11-\mathrm{H} 11 \cdots \mathrm{~N} 9^{\mathrm{i}}$ (symmetry code as in Table 2) hydrogen bond, which links the molecules into a zigzag chain along the b axis (Fig. 2).

Experimental

A mixture of o-aminophenylbenzimidazole (o-APB, 0.05 mol , 10.45 g) and benzaldehyde ($0.05 \mathrm{~mol}, 5.30 \mathrm{~g}$)/p-chlorobenzaldehyde $(0.05 \mathrm{~mol}, 7.30 \mathrm{~g})$ was refluxed in ethanol $(200 \mathrm{ml})$ for 5 h . The resulting solution was concentrated under reduced pressure to a small volume to obtain a cream compound. The solid was recrystallized from ethanol to give the white crystalline compound (I) (yield 70\%; m.p. 472 K).

Received 5 September 2005 Accepted 12 September 2005 Online 14 September 2005

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{~N}_{3}$
$M_{r}=297.35$
Monoclinic, $P 2_{1} / c$
$a=11.569$ (8) A
$b=9.915$ (7) \AA
$c=14.337(10) \AA$
$\beta=114.086$ (4) ${ }^{\circ}$
$V=1501.36(19) \AA^{3}$
$Z=4$

$D_{x}=1.316 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{x}=1.316 \mathrm{Mg} \mathrm{m}$
Mo $K \alpha$ radiation
Cell parameters from 4596 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, white
$0.25 \times 0.2 \times 0.2 \mathrm{~mm}$
Data collection
MacScience DIPLabo 32001
diffractometer
ω scans
4596 measured reflections
2441 independent reflections
2133 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.144$
$S=1.18$
2441 reflections
209 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0844 P)^{2}\right. \\
& \quad+0.172 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.31 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.172(16)
\end{aligned}
$$

Figure 1
View of (I), with 50% probability displacement ellipsoids.

Figure 2
The crystal packing in (I), viewed down the b axis. Dashed lines indicate hydrogen bonds.

We thank the DST, Government of India, for financial assistance under the project $\mathrm{SP} / \mathrm{I} 2 / \mathrm{FOO} / 93$. MM thanks the CSIR, Government of India, for the award of a Senior Research Fellowship.

References

Alexandre, F., Berecibar, A., Wrigglesworth, R. \& Besson, T. (2003). Tetrahedron, 59, 1413-1419.
De Clercq, E. (2001). Curr. Med. Chem. 8, 1543-1572.

organic papers

Elgemeie, G. E. J., Fathy, N. M., Hopf, H. \& Jones, P. G. (1998). Acta Cryst. C54, 1109-1111.
Jayalakshmi, K., Devarajegowda, H. C., Anandalwar, S. M., Bheemanna, H. G., Gayathri, V., Gowda, N. M. N., Begum, N. S., Rangappa, K. S. \& Prasad, J. S. (2004). Anal. Sci. 20, x87-x88.

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Torres, H. \& Insuasty, B. (2002). Acta Cryst. C58, o305-o310.

Low, J. N., Insuasty, B., Torres, H. \& Cobo, J. (2003). Acta Cryst. E59, o1801o1803.
MacScience (2002). XPRESS. MacScience Co. Ltd, Yokohama, Japan.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

